
Fractal Based Management of Heterogeneous
Data Streams

M.Prosant Kumar1, N.Naga Subrahmanyeswari2 , S. Rama Sree3

1,3Department of CSE, 2Department of IT

Aditya Engineering College

Surampalem, Kakinada

Abstract - Efficient handling of huge amount of data stream is
become mandatory in various domains such as business,
finance, sensor networks etc. Come through these data
streams poses challenges those are distinct from those
addressed by orthodox database management systems. The
enormous increase of Sensor Networks, GPS enabled devices
and RFIDs results in highly impulsive environments where
objects as well as queries are continuously moving. This paper
presents a continuous query processing designed specifically
for highly dynamic environments. This paper presents a data
stream indexing system that satisfies the requirements in
evolving data streams. This paper applying the fractal based
indexing scheme that enable the system for fast indexing and
querying. This paper also address the issue of memory based
and disk based fractal management to support skew
distributions of data streams.

Keywords— Data stream, Indexing,Querying, Self similarity,
Fractal Dimension,Fractal Tree

I. INTRODUCTION
A fractal can be defined by the self-similarity property, i.e., an

object that presents roughly the same characteristics over a large
range of scales [Schroeder 1991]. Accordingly, a real dataset
exhibiting fractal behaviour is exactly or statistically self-similar,
such that parts of any size of the data present the same
characteristics of the whole dataset. From the Fractal Theory, the
fractal dimension [3][4] is particularly useful to data analysis, as it
provides an estimate of the intrinsic dimension D of real datasets.
The intrinsic dimension gives the dimensionality of the object
represented by the data regardless of the dimension E of the space
in which it is embedded. In other words, D measures the non-
uniformity behaviour [6] of real data [Faloutsos and Kamel 1994;
Traina et al. 2005]. For instance, a set of points defining a plane
embedded in a three-dimensional space (E = 3) has two
independent attributes and a third one correlated to the others,
resulting in D = 2. The fractal dimension of real datasets can be
determined by the Correlation Fractal Dimension D2. An effcient
approach to measure the fractal dimension [1] of datasets
embedded in E-dimensional spaces is the Box-Counting method
[Schroeder 1991], which defines D2 as presented in Equation 1,
where r is the side of the cells in a (hyper) cubic grid that divides
the address space of the dataset and Cr,i is the count of points in
the ith cell.

An efficient algorithm [2] (linear cost on the number of elements
in the dataset) to compute D2 was proposed by Traia et al. [2000].

Thus, D2 can be a useful tool to estimate the intrinsic dimension D
of real datasets with feasible computational cost.

 Concepts from the Fractal Theory have been applied to
several tasks in data mining and data analysis, such as selectivity
estimation [Baioco et al. 2007], clustering[7] [Barbará and Chen
2000], time series forecasting [Chakrabarti and Faloutsos 2002],
correlation detection [Sousa et al. 2007] and data distribution
analysis [Traina et al. 2005].

The information of intrinsic behaviour provided by the fractal
dimension D2 can also be applied to detect behaviour changes in
evolving data streams. Essentially, the idea is to continually
measure the fractal dimension of the data stream over time in
order to monitor its evolving behaviour. Thus, significant
variations in successive measures of D2 can indicate changes in
the intrinsic characteristics of the data.

1.1 Challenges in Existing System Incremental Evaluation of
Continuous Queries:
 Most of the spatio-temporal queries are continuous in nature.
Unlike snapshot queries that are evaluated only once, continuous
queries require continuous evaluation as the query result becomes
invalid with the change of information.
 Existing algorithms for continuous spatiotemporal queries
aim to optimize the time interval between each two instances of
the snapshot queries with the large number of continuous queries,
re-evaluating a continuous spatial, temporal query, even with large
time intervals, poses a redundant processing for the location-aware
servers.

1.2 Large Number of Concurrent Continuous Queries:
 Most of the existing spatio-temporal algorithms focus on
evaluating only one spatio-temporal query In a typical location-
aware server, there is a huge number of concurrently outstanding
continuous spatiotemporal queries. Handling each query as an
individual entity dramatically degrades the performance of the
location-aware server.

1.3 Wide Variety of Continuous Queries:

Most of the existing query processing techniques focus on
solving special cases of continuous spatio-temporal queries are
valid only for moving queries on stationary objects, are valid only
for stationary range queries

II. MOTIVATION
Thus, a system that manages infinite heterogeneous data

streams must satisfy the following requirements

M. Prosant Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4689 - 4691

4689

 Mechanism for rate control must be in place to deal with
data streams that are nearly always too fast for any
indexing system.

 There must be capacity control because the data streams
are infinite while the storage space is finite.

 The structure of the data varies in time (i.e.,
heterogeneity of data streams), therefore adaptive
indexing methods must be developed.

 Data should be efficiently stored.
 Volume can be huge, therefore everything must be

appended -only; both indexing and query processing
must only use forward-only file access.

 Users can query and filter the index streams efficiently

2.1 Proposed Approach

Proposed approach considers not only the problem of
efficiently archiving heterogeneous data streams, but also that of
querying them. Queries of interest include filtering for specific
attributes in data readings and filtering them based on their values.
Common queries are simple in complexity, but because of the
huge volume of data streams and queries, the query response time
must be minimized

III. FRACTALS
Fractals are of rough or fragmented geometric shape that can

be subdivided in parts, each of which is a reduced copy of the
whole. They are crinkly objects that defy conventional measures,
such as length and are most often characterized by their fractal
dimension. They are mathematical sets with a high degree of
geometrical complexity that can model many natural phenomena.
Almost all natural objects can be observed as fractals [5]
(mountains, coastlines, trees, and clouds). Their fractal dimension
strictly exceeds topological dimension
3.1 Fractal dimension
 The number, very often non-integer, often the only one
measure of fractals it measures the degree of fractal boundary
fragmentation or irregularity over multiple scales it determines
how fractal differs from Euclidean objects (point, line, plane,
circle etc)
3.2 Self-similarity/ Semi-self similarity
 Fractal is strictly self-similar if it can be expressed as a union
of sets, each of which is an exactly reduced copy (is geometrically
similar to) of the full set. The most fractal looking in nature do not
display this precise form Natural objects are not union of exact
reduced copies of whole. A magnified view of one part will not
precisely reproduce the whole object, but it will have the same
qualitative appearance. This property is called statistical self-
similarity or semi-self-similarity
3.3 Fractal Tree data structure Advantages
 A drop-in B-tree replacement supporting fast insertions for
high entropy data. 100x faster inserts good data locality with no
memory-specific parameterization. Data can be indexed quickly
on disk, even if the data arrival order is independent of data-query
order.
Thus, insertion performance is a currency that we can use to
achieve faster query performance through indexing Fractal Trees
are generally faster, easier to implement, and platform
independent Fractal Trees scale with disk bandwidth not seek time.

3.4 Fractal Tree Properties
1. log N arrays, one array for each power of two
2. Each array is completely full or empty
3. Each array is sorted
4. Searching in a Simplified Fractal Tree
5. Fractal Tree indexes can use 1/100th the power of B-

trees
6. Fractal Tree indexes will make good use of cores.
7. Fractal Tree indexes ride the right technology trends

In the future, all storage systems will use Fractal Tree indexes

IV. RESULTS
Menu
1. Insert
2. View
3. Search
4. Exit

Enter your choice: 1
Key: 25
Current Record No: 1
Key: 38
Current Record No: 2
Bin of 2 is 01
Cur Node:
Array:
Key: 25
Key: 28
Current Record No: 3
Bin of 3 is 11
Key: 44
Current Record No: 4
Bin of 4 is 001
Cur Node:
Array:
Key: 28
Cur Node:
Array:
Key: 25
Key: 38
Key: 34
Current Record No: 5
Bin of 5 is 101
Key: 63
Current Record No: 6
Bin of 6 is 011
Key: 24
Current Record No: 7
Bin of 7 is 111
Key: 55
Current Record No: 8
Bin of 8 is 0001
Cur Node:
Array:
Key: 24
Cur Node:
Array:
Key: 34
Key: 63

M. Prosant Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4689 - 4691

4690

Cur Node:
Array:
Key: 25
Key: 28
Key: 38
Key: 44
Key: 65
Current Record No: 9
Bin of 9 is 1001
Key: 36
Current Record No: 10
Bin of 10 is 0101
Key: 26
Current Record No: 11
Bin of 11 is 1101
Key: 48
Current Record No: 12
Bin of 12 is 0011
Key: 43
Current Record No: 13
Bin of 13 is 1011
Key: 20
Current Record No: 14
Bin of 14 is 0111

Enter your choice: 2 (view all)
Given Records
Node-
Array:
Key: 0
Node-
Array:
Key: 20
Key: 43
De-Array:
Key: 26
Key: 36
Key: 48
Key: 65
E-Array:
Key: 24
Key: 25
Key: 28
Key: 34
Key: 38
Key: 44
Key: 55
Key: 63

Enter your choice: 3 (search)
Enter the Key of the Record to be found: 38
Search Size: 2
Invalid Key, Record Not Found
Search Size: 4
Invalid Key, Record Not Found
Search Size: 8
Record Found @ Node-3
Record Info:
Key: 38

V. CONCLUSION

Extension of proposed work is to apply structural clustering
techniques to perform online clustering of the incoming data
stream into more homogeneous streams, each of which can be
indexed more efficiently.

REFERENCES
[1] L. Liebovitch and T. Toth. A Fast Algorithm toDetermine Fractal

Dimensions by Box Countig. Physics Letters, 141A (8), 19.
[2] Baioco, G. B., Traina, A. J. M., and Traina, C. Mamcost: Global

and local estimates leading to robust cost estimation of similarity
queries. In Proceedings of the SSBBM International Conference on
Scientific and Statistical Database Management. Ban, Canada, pp.
6–16, 2007

[3] Barbará, D. and Chen, P. Using the fractal dimension to cluster
datasets. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. Boston,
MA, USA, pp. 260–264, 2000.

[4] D. Barbar a and P. Chen. Using the Fractal Dimension to Cluster
Datasets. Technical Report ISE-TR-99-08, George Mason
University, Information and Software Engineering Department, Oct.
1999.

[5] Chakrabarti, D. and Faloutsos, C. F4: large-scale automated
forecasting using fractals. In Proceedings of the CIKM International
Conference on Information and Knowledge Management. McLean,
VA, EUA, pp. 2–9, 2002.

[6] Faloutsos, C. and Kamel, I. Beyond uniformity and independence:
Analysis of r-trees using the concept of fractal dimension. In
Proceedings of the ACM PODS Symposium on Principles of
Database Systems. Minneapolis, MN, USA, pp. 4–13, 1994.

[7] A. Jain and R. C. Dubes. Algorithms for Clustering Data.
Prentice Hall, Englewood Cli_s, New Jersey, 1988.

M. Prosant Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4689 - 4691

4691

