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Abstract - Efficient handling of huge amount of data stream is 
become mandatory in various domains such as business, 
finance, sensor networks etc.  Come through these data 
streams poses challenges those are distinct from those 
addressed by orthodox database management systems. The 
enormous increase of Sensor Networks, GPS enabled devices 
and RFIDs results in highly impulsive environments where 
objects as well as queries are continuously moving. This paper 
presents a continuous query processing designed specifically 
for highly dynamic environments. This paper presents a data 
stream indexing system that satisfies the requirements in 
evolving data streams. This paper applying the fractal based 
indexing scheme that enable the system for fast indexing and 
querying. This paper also address the issue of memory based 
and disk based fractal management to support skew 
distributions of data streams.  
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I. INTRODUCTION 
A fractal can be defined by the self-similarity property, i.e., an 

object that presents roughly the same characteristics over a large 
range of scales [Schroeder 1991]. Accordingly, a real dataset 
exhibiting fractal behaviour is exactly or statistically self-similar, 
such that parts of any size of the data present the same 
characteristics of the whole dataset. From the Fractal Theory, the 
fractal dimension [3][4] is particularly useful to data analysis, as it 
provides an estimate of the intrinsic dimension D of real datasets. 
The intrinsic dimension gives the dimensionality of the object 
represented by the data regardless of the dimension E of the space 
in which it is embedded. In other words, D measures the non-
uniformity behaviour [6] of real data [Faloutsos and Kamel 1994; 
Traina et al. 2005]. For instance, a set of points defining a plane 
embedded in a three-dimensional space (E = 3) has two 
independent attributes and a third one correlated to the others, 
resulting in D = 2. The fractal dimension of real datasets can be 
determined by the Correlation Fractal Dimension D2. An effcient 
approach to measure the fractal dimension [1] of datasets 
embedded in E-dimensional spaces is the Box-Counting method 
[Schroeder 1991], which defines D2 as presented in Equation 1, 
where r is the side of the cells in a (hyper) cubic grid that divides 
the address space of the dataset and Cr,i is the count of points in 
the ith cell. 

 
An efficient algorithm [2] (linear cost on the number of elements 
in the dataset) to compute D2 was proposed by Traia et al. [2000]. 

Thus, D2 can be a useful tool to estimate the intrinsic dimension D 
of real datasets with feasible computational cost. 

        Concepts from the Fractal Theory have been applied to 
several tasks in data mining and data analysis, such as selectivity 
estimation [Baioco et al. 2007], clustering[7] [Barbará and Chen 
2000], time series forecasting [Chakrabarti and Faloutsos 2002], 
correlation detection [Sousa et al. 2007] and data distribution 
analysis [Traina et al. 2005]. 

The information of intrinsic behaviour provided by the fractal 
dimension D2 can also be applied to detect behaviour changes in 
evolving data streams. Essentially, the idea is to continually 
measure the fractal dimension of the data stream over time in 
order to monitor its evolving behaviour. Thus, significant 
variations in successive measures of D2 can indicate changes in 
the intrinsic characteristics of the data. 
 
1.1   Challenges in Existing System Incremental Evaluation of 
Continuous Queries: 
          Most of the spatio-temporal queries are continuous in nature. 
Unlike snapshot queries that are evaluated only once, continuous 
queries require continuous evaluation as the query result becomes 
invalid with the change of information. 
          Existing algorithms for continuous spatiotemporal queries 
aim to optimize the time interval between each two instances of 
the snapshot queries with the large number of continuous queries, 
re-evaluating a continuous spatial, temporal query, even with large 
time intervals, poses a redundant processing for the location-aware 
servers. 
 
1.2    Large Number of Concurrent Continuous Queries: 
       Most of the existing spatio-temporal algorithms focus on 
evaluating only one spatio-temporal query In a typical location-
aware server, there is a huge number of concurrently outstanding 
continuous spatiotemporal queries. Handling each query as an 
individual entity dramatically degrades the performance of the 
location-aware server. 
  
1.3    Wide Variety of Continuous Queries: 

Most of the existing query processing techniques focus on 
solving special cases of continuous spatio-temporal queries are 
valid only for moving queries on stationary objects, are valid only 
for stationary range queries  

II. MOTIVATION 
Thus, a system that manages infinite heterogeneous data 

streams must satisfy the following requirements 
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 Mechanism for rate control must be in place to deal with 
data streams that are nearly always too fast for any 
indexing system. 

 There must be capacity control because the data streams 
are infinite while the storage space is finite. 

 The structure of the data varies in time (i.e., 
heterogeneity of data streams), therefore adaptive 
indexing methods must be developed. 

 Data should be efficiently stored.  
 Volume can be huge, therefore everything must be 

appended -only; both indexing and query processing 
must only use forward-only file access. 

 Users can query and filter the index streams efficiently 

 
2.1 Proposed Approach 

Proposed approach considers not only the problem of 
efficiently archiving heterogeneous data streams, but also that of 
querying them. Queries of interest include filtering for specific 
attributes in data readings and filtering them based on their values. 
Common queries are simple in complexity, but because of the 
huge volume of data streams and queries, the query response time 
must be minimized 

III. FRACTALS 
Fractals are of rough or fragmented geometric shape that can 

be subdivided in parts, each of which is a reduced copy of the 
whole. They are crinkly objects that defy conventional measures, 
such as length and are most often characterized by their fractal 
dimension. They are mathematical sets with a high degree of 
geometrical complexity that can model many natural phenomena. 
Almost all natural objects can be observed as fractals [5] 
(mountains, coastlines, trees, and clouds). Their fractal dimension 
strictly exceeds topological dimension 
3.1    Fractal dimension 
      The number, very often non-integer, often the only one 
measure of fractals it measures the degree of fractal boundary 
fragmentation or irregularity over multiple scales it determines 
how fractal differs from Euclidean objects (point, line, plane, 
circle etc) 
3.2   Self-similarity/ Semi-self similarity 
         Fractal is strictly self-similar if it can be expressed as a union 
of sets, each of which is an exactly reduced copy (is geometrically 
similar to) of the full set. The most fractal looking in nature do not 
display this precise form Natural objects are not union of exact 
reduced copies of whole. A magnified view of one part will not 
precisely reproduce the whole object, but it will have the same 
qualitative appearance. This property is called statistical self-
similarity or semi-self-similarity 
3.3    Fractal Tree data structure Advantages 
          A drop-in B-tree replacement supporting fast insertions for 
high entropy data. 100x faster inserts good data locality with no 
memory-specific parameterization. Data can be indexed quickly 
on disk, even if the data arrival order is independent of data-query 
order. 
Thus, insertion performance is a currency that we can use to 
achieve faster query performance through indexing Fractal Trees 
are generally faster, easier to implement, and platform 
independent Fractal Trees scale with disk bandwidth not seek time. 
 
 

3.4    Fractal Tree Properties 
1. log N arrays, one array for each power of two 
2. Each array is completely full or empty 
3. Each array is sorted 
4. Searching in a Simplified Fractal Tree 
5. Fractal Tree indexes can use 1/100th the power of B-

trees 
6. Fractal Tree indexes will make good use of cores. 
7. Fractal Tree indexes ride the right technology trends 

In the future, all storage systems will use Fractal Tree indexes 
 

IV. RESULTS 
Menu 
1. Insert 
2. View 
3. Search 
4. Exit 
 
Enter your choice: 1 
Key: 25 
Current Record No: 1 
Key: 38 
Current Record No: 2 
Bin of 2 is 01 
Cur Node: 
Array: 
Key: 25 
Key: 28 
Current Record No: 3 
Bin of 3 is 11 
Key: 44 
Current Record No: 4 
Bin of 4 is 001 
Cur Node: 
Array: 
Key: 28 
Cur Node: 
Array: 
Key: 25 
Key: 38 
Key: 34 
Current Record No: 5 
Bin of 5 is 101 
Key: 63 
Current Record No: 6 
Bin of 6 is 011 
Key: 24 
Current Record No: 7 
Bin of 7 is 111 
Key: 55 
Current Record No: 8 
Bin of 8 is 0001 
Cur Node: 
Array: 
Key: 24 
Cur Node: 
Array: 
Key: 34 
Key: 63 

M. Prosant Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4689 - 4691

4690



Cur Node: 
Array: 
Key: 25 
Key: 28 
Key: 38 
Key: 44 
Key: 65 
Current Record No: 9 
Bin of 9 is 1001 
Key: 36 
Current Record No: 10 
Bin of 10 is 0101 
Key: 26 
Current Record No: 11 
Bin of 11 is 1101 
Key: 48 
Current Record No: 12 
Bin of 12 is 0011 
Key: 43 
Current Record No: 13 
Bin of 13 is 1011 
Key: 20 
Current Record No: 14 
Bin of 14 is 0111 
 
Enter your choice: 2 (view all) 
Given Records 
Node- 
Array: 
Key: 0 
Node- 
Array: 
Key: 20 
Key: 43 
De-Array: 
Key: 26 
Key: 36 
Key: 48 
Key: 65 
E-Array: 
Key: 24 
Key: 25 
Key: 28 
Key: 34 
Key: 38 
Key: 44 
Key: 55 
Key: 63 
 
Enter your choice: 3 (search) 
Enter the Key of the Record to be found: 38 
Search Size: 2 
Invalid Key, Record Not Found 
Search Size: 4 
Invalid Key, Record Not Found 
Search Size: 8 
Record Found @ Node-3 
Record Info: 
Key: 38 

V. CONCLUSION 

Extension of proposed work is to apply structural clustering 
techniques to perform online clustering of the incoming data 
stream into more homogeneous streams, each of which can be 
indexed more efficiently. 
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